CLASSIFICATION BASED FINANCIAL MARKET PREDICTIONS

Deep Neural Networks

Diego Klabjan Professor, Industrial Engineering and Management Sciences Founding Director, Master of Science in Analytics

Team

- Research in
 - Deep learning (models, algorithms, analysis)
 - Natural language processing (ontologies, knowledge management)
 - Machine learning (robust PCA, large-scale optimization)
- Director, Master of Science in Analytics
 - Full-time single cohort program
 - All aspects of analytics, data science, artificial intelligence
- Joint work with Mark Harmon
 - Ph.D candidate
 - Lida Zhang, Research Assistant

MS in Analytics at Northwestern

- Full-time
 - On-campus in Evanston
- Fifteen months to complete
 - Sept 2016 to Dec 2017
- Small cohort
 - Maximum 40 students
- From SQL to machine learning to

business

python #+ a b l e a v

Shedooo

- Practical
 - Two company sponsored project
 - Summer internship
- Rigorous
 - Design of algorithms in models
 - Implementations
 - Artificial
 Intelligence

 $Northwestern | {\tt Engineering} \\$

Motivation

Long-term Goal

- The trader bot
 - Automatically trade
- Precursor
 - Predict movement/direction of prices
- Is the stock price
 - Going up/down by more than
 - 10% or one standard deviation
 - In the next short period of time
- Challenge
 - Correlation of assets

http://rubybot.blogspot.com

Strategy Engineering

How can we engineer a strategy producing buy / sell decisions ?

Are securities going

- up by 10%
- down by 10%
- unchanged

in the next few minutes?

Strategy Engineering

Are securities going

- one and two standard deviations
- more than two standard deviations
- unchanged

in the next few minutes?

Traditional Pipeline

Old vs New

- Traditional
 - 100 features

- Deep learning
 - Use all features

Concepts

- Feature vector at time timestamp t
 - Prices

 Model has to capture temporal dimension 	10.5
 Interactions 	45.1
 In time and among assets modeled 	52.1
 Temporal aspects 	46.3
 Recurrent neural networks 	15.3
 Feature selection 	

1 dimensional convolutional neural networks

Goal

- Predict security price given
 - Past prices
 - Prices of other securities
- Five labels for each security
 - No difference in price
 - Small increase/decrease (with a standard deviation)
 - Large increase/decrease (more than a standard deviation)
- Varying prediction time horizon

Models

Characteristics

- Difficulties of financial time series
 - Correlations
 - Drift within the series
 - Infinite time series
 - Standard approaches assume finite sequences
 - Sequence length undetermined
- Our approach
 - Vary sequence length on output
 - Overlap sequences
 - Train on one year and predict on one week
 - Walk forward (validation is last week of the year)

Convolutional Neural Networks

- Learns filters
 - Short sliding windows
 - Weighted sums
 - One for each filter
- Advantageous for
 - Observing groups of data close in time
 - Model captures moving averages, etc
 - Observes similarly to humans on images

Input Features

Stock	δ ₁	δ ₂	δ ₃	δ ₄	δ ₅
Stock 1	0	-0.27	0	0.25	0.25
Stock 2	0.25	0	0	-0.52	0
Stock 3	0	0.25	0.5	0	-0.25
Stock 4	0	0	0	0.25	0
Stock 5	-0.25	-0.28	0.5	0	0.25

Northwestern

Recurrent Neural Network

- Created specifically for time series
- Model flow
 - Input to output
 - Previous cell passes encoding to next time step
 - Chooses information to retain

Sequence to Sequence Network

- Variable size input and output
 - Output prediction length flexible
- Two parts
 - Encoder
 - Decoder

Combined Model

Adaptive Prediction Length

- Function that captures 'reliability' of prediction
 - Max probability value $g_t = \max_i y_{i,t}$
 - Entropy
 - Total Variation

$$g_t = \max_i |y_{i,t} - y_{i,t-1}|$$

$$g_{i,t} = \sum_{i} y_{it} \log y_{it}$$

Wasserstein

$$\min_{w \ge 0} \sum_{j} w_j (y_{jt} - y_{jt-1})$$
$$|w_p - w_q| \le |p - q| \ \forall p, q$$

Loss Functions

- Contains two parts
 - Accuracy loss (log loss)
 - Time prediction penalty
- Balance loss to
 - Increase F1 performance
 - Predict as far in time as possible

$$\sum_{g_{t(X,\theta)} \geq \tau} KL(Y_t||p_t(X,\theta)) + \lambda \sum_t \max(\tau - g_t(X,\theta), 0)$$

Improving Robustness

- Normal prior on weights
- Standard
 - Compute expected value of each weight
- Idea
 - Compute expected value
 - Compute standard deviation for each weight

$$\min_{\overline{w},\overline{\sigma}} E_{X,Y} E_{z \sim N(\overline{w},\overline{\sigma})} KL(Y||p(X,z))$$

$$\min_{\overline{w},\overline{\sigma}} E_{X,Y} E_{z \sim N(0,1)} KL(Y||p(X,\overline{w}+z\overline{\sigma}))$$

Adaptive Computational Time

 Alex Graves (2017): Adaptive Computation Time for Recurrent Neural Networks

ACT

- Developed for RNN
 - Extended to sequence-to-sequence
- Embed attention
 - In decoder add

$$att_{t} = \sum_{i} \alpha_{it} hidden_{i}^{enc}$$
$$\alpha_{it} = f(hidden_{t-1}^{dec}, hidden_{i}^{enc})$$

Evaluation

Data

- Two datasets
 - Commodity securities
 - ETF's
- Data contains
 - 5 minute tick data
 - Roughly 14 years
 - No volume information
- Data imbalanced
 - Few samples outside of two standard deviations

Performance

Model	Average F1 Value
ConvLSTM	0.324
10 ticks	0.250
20 ticks	0.279
40 ticks	0.271

After first few weeks of training convolutional LSTM works much better.

Enhancements

Prediction Reliability

- Maximum prediction probability above 0.35
 - Challenge how to set up training set
 - Specific loss function
- Stock price does not change
 - Reliable 'longer term predictions'

F-score by Stock

• 'Easier' to predict stocks with no large swings

	Predict 1
Seq2seq	0.53
ACT	0.25
Seq2seq + ACT	0.54

Conclusions on Deep Networks

- Pros
 - Works for complex models
 - No need for feature selection
 - Improved accuracy

- Cons
 - Long time to train
 - Hyperparameter nightmare
 - Expertise
 - Models
 - Implementation
 - Tricks of trade
- Convolution with sequence to sequence works best
- Challenge with unbalanced data

Northwestern Engineering

Ongoing Work

- Further enhancement to ACT
 - Use for varying prediction sequences
- Drift detection
 - Autoencoders
 - ACT
- Deep reinforcement learning
 - Place orders
 - Or perhaps contextual bandit?

Northwestern Engineering

Thank you very much! @dklabjan d-klabjan@northwestern.edu