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Team 

• Research in 

• Deep learning (models, algorithms, analysis) 

• Natural language processing (ontologies, knowledge management) 

• Machine learning (robust PCA, large-scale optimization) 

• Director, Master of Science in Analytics 

• Full-time single cohort program 

• All aspects of analytics, data science, artificial intelligence 

• Joint work with Mark Harmon 

• Ph.D candidate 

• Lida Zhang, Research Assistant 
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MS in Analytics at Northwestern 
• Full-time 

• On-campus in Evanston 

• Fifteen months to complete 
• Sept 2016 to Dec 2017 

• Small cohort 
• Maximum 40 students 

• From SQL to machine learning to 

business 

• Practical 
• Two company 

sponsored project 
• Summer internship 

• Rigorous 
• Design of 

algorithms in 
models 

• Implementations 
• Artificial 

Intelligence 
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Motivation 
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Long-term Goal 

http://rubybot.blogspot.com 

• The trader bot 
• Automatically trade 

• Precursor 
• Predict movement/direction of prices 

• Is the stock price 
• Going up/down by more than 

• 10% or one standard deviation 
• In the next short period of time 

• Challenge 
• Correlation of assets 

http://rubybot.blogspot.com
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Strategy Engineering 

How can we engineer a strategy producing buy / 
sell decisions ? 

Are securities going 
• up by 10% 
• down by 10% 
• unchanged 

in the next few minutes? 
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Strategy Engineering 

Are securities going 

• one and two standard deviations 
• more than two standard deviations 
• unchanged 

in the next few minutes? 
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Traditional Pipeline 

Raw features 5 minute mid-prices 

• Lagged price differences from 1 to 100 
• Moving price averages with window size from 5 to 100 
• Pair-wise correlation of returns 

Select 100 features Feature set consists of 9,895 features 

Label 

Labels 
• Positive 
• Neutral 
• Negative market returns 

Engineered 
features 

Normalized 
features Feature selection Labeled 

feature set 
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Input 
layer 

x(l) ----> 

x(2) ----> 

x(3) ----> 

x(4) ----> 

x(5) ----> 

x(6) ----> 

x(7) ----> 

Hidden 
layer 1 Hidden 

layer 2 

Output 
layer 

Old vs New 
• Traditional • Deep learning 

• 100 features • Use all features 
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Concepts 

• Feature vector at time timestamp t 
• Prices 

• Model has to capture temporal dimension 10.5 
• Interactions 45.1 

• In time and among assets modeled 52.1 
• Temporal aspects 46.3 

• Recurrent neural networks 15.3 
• Feature selection 

• 1 dimensional convolutional neural networks 
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Goal 
• Predict security price given 

• Past prices 
• Prices of other securities ? 

• Five labels for each security 
• No difference in price ????? 
• Small increase/decrease (with a standard deviation) 
• Large increase/decrease (more than a standard deviation) 

• Varying prediction time horizon 
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Models 
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• Difficulties of financial time series 
• Correlations 
• Drift within the series 
• Infinite time series 

• Standard approaches assume finite sequences 
• Sequence length undetermined 

• Our approach 

Characteristics 

• Vary sequence length on output 
• Overlap sequences 
• Train on one year and predict on one week 

• Walk forward (validation is last week of the year) 



• Learns filters
• Short sliding windows
• Weighted sums

• One for each filter

• Advantageous for
• Observing groups of data

close in time
• Model captures moving 

averages, etc
• Observes similarly to humans on images

Convolutional Neural Networks
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Input Features

Stock δ1  δ2 δ3 δ4 δ5

Stock 1 0 -0.27 0 0.25 0.25
Stock 2 0.25 0 0 -0.52 0
Stock 3 0 0.25 0.5 0 -0.25
Stock 4 0 0 0 0.25 0
Stock 5 -0.25 -0.28 0.5 0 0.25

Northwestern I ENGINEERING 



• Created specifically for time series
• Model flow

• Input to output
• Previous cell passes encoding 

to next time step
• Chooses information to retain

Recurrent Neural Network

• • • 
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• Variable size input and output
• Output prediction length flexible

• Two parts
• Encoder 
• Decoder

Sequence to Sequence Network

OUTPUT SEQUENCE ____ ,,,,..._ ___ _ 
r Y1 Y2 Y3' 

y NULL Y2 Y3 

INPUT SEQUENCE 
Northwestern I ENGINEERING 



Combined Model
INPUT FEATURES SEQUENCE LEARNING OUTPUT

CNN

CNN

CNN

LSTM

LSTM

LSTM

y1

y2

yT



• Function that captures ‘reliability’ of prediction
§ Max probability value
§ Entropy
§ Total Variation
§ Wasserstein 

Adaptive Prediction Length
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• Contains two parts
§ Accuracy loss (log loss)
§ Time prediction penalty

• Balance loss to
§ Increase F1 performance
§ Predict as far in time as possible

Loss Functions
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• Normal prior on weights
• Standard

§ Compute expected value of each weight
• Idea

§ Compute expected value
§ Compute standard deviation for each weight

Improving Robustness
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• Alex Graves (2017): Adaptive Computation Time for Recurrent 
Neural Networks

Adaptive Computational Time

Northwestern I ENGINEERING 



• Developed for RNN
§ Extended to sequence-to-sequence

• Embed attention
§ In decoder add

ACT
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Evaluation
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• Two datasets
§ Commodity securities
§ ETF’s

• Data contains
§ 5 minute tick data
§ Roughly 14 years
§ No volume information

• Data imbalanced
§ Few samples outside of two standard deviations

Data
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- Series 
- One Std 
- Two Std 
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Series and Deviation 
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Performance

After first few weeks of training
convolutional LSTM works much better.

Model Average F1
Value

ConvLSTM 0.324

10 ticks 0.250

20 ticks 0.279

40 ticks 0.271
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Average Fl Values with Various Models 

5.0 7.5 10.0 
week 

12.5 15.0 

ConvLSTM 
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Enhancements

Fl Scores 
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Prediction Reliability
• Maximum prediction 

probability above 0.35
§ Challenge how to set up 

training set
§ Specific loss function

• Stock price does not change
§ Reliable ‘longer term 

predictions’

Northwestern I ENGINEERING 
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• ’Easier’ to predict stocks 
with no large swings

F-score by Stock
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ACT
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Conclusions on Deep Networks
• Pros

§ Works for complex models
§ No need for feature selection
§ Improved accuracy

• Cons
§ Long time to train
§ Hyperparameter nightmare
§ Expertise

• Models
• Implementation
• Tricks of trade

§ Convolution with sequence to sequence works best
§ Challenge with unbalanced data

Northwestern I ENGINEERING 



• Further enhancement to ACT
§ Use for varying prediction sequences

• Drift detection
§ Autoencoders
§ ACT

• Deep reinforcement learning
§ Place orders
§ Or perhaps contextual bandit?

Ongoing Work

Northwestern I ENGINEERING 



Thank you very much!
@dklabjan

d-klabjan@northwestern.edu

McCORMICK SCHOOL OF 

Northwestern ENGINEERING 




